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Abstract
The neat formulation that describes the gauge interactions associated with
internal symmetries is extended to the case of a simple, yet non-trivial,
symmetry group structure which mixes gravity and electromagnetism by
associating a gauge symmetry with a central extension of the Poincaré group.

PACS numbers: 11.15.−q, 04.50.+h

1. Introduction

The notion of gauge symmetry is traced back to Weyl [1] with respect to the invariance
of a system under scale (‘gauge’) transformations depending on the particular space-time
point. However, nowadays in modern physics the term ‘gauge’ has nothing to do with
scale transformations, but with the whole picture that describes the fundamental interactions.
In the standard Lagrangian formalism, promoting a given underlying rigid symmetry to a
‘local’ one requires the introduction of a connection which is interpreted as a potential
providing the corresponding gauge interaction. This is essentially the formulation of the
so-called minimal coupling principle. Internal gauge invariance has successfully led to the
electromagnetic interaction associated with U(1), electro-weak interactions associated with
(SU(2)⊗U(1))/Z2, and finally to the strong interaction associated with colour SU(3). As an
extra bonus of gauge theory, the association of interactions with groups translates the problem
of unification of forces to that of finding rigid symmetry groups containing older ones as non-
trivial (not as a direct product) subgroups. Although the final choice of a ‘grand unification
group’ for internal symmetry, of the type SU(5) [2] or SO(10) [3], still remains to be found,
the actual problems for achieving such a result are of a phenomenological nature [4].

The case of the gravitational interaction understood as some sort of gauge theory is a
question which was firstly considered by Utiyama [5] and later by Kibble [6]. After these
pioneer papers, much effort has been devoted to achieving a clear understanding of the gauge
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nature of the gravitational field (see among others [7–31]), although fully disconnected from
other interactions. The unification of gravity and the other interactions would have supposedly
required the non-trivial mixing of the space-time group and some internal symmetry, a task
explicitly ‘forbidden’ long ago by the so-called no-go theorems by O’Raifeartaigh, Coleman,
Mandula, Michel, etc [32–37]. The ‘no-go’ theorems state that there is no finite-dimensional
Lie group containing the Poincaré group, acting as diffeomorphisms of the Minkowski space-
time, and any internal SU(n) group, except for the direct product. In this paper, we shall
bypass no-go theorems in a subtle way by replacing the Poincaré group with the space-time
symmetry of the relativistic quantum particle, i.e. a central extension of the Poincaré group by
U(1) (see [38] and references there in). The proposed symmetry has been successfully used
in a group approach to quantization (GAQ) [39] to describe the (classical) particle-mechanics
analogue of the present problem [38]. GAQ was originally formulated as a group-theoretical
quantization scheme designed for obtaining the quantum dynamics of a physical system out of
a given centrally extended Lie group. However, it also describes naturally the classical limit
in the Hamilton–Jacobi picture.

The paper is organized as follows. Section 2 is devoted to the general structure of gauge
theory including space-time symmetries. In section 3 we present the gauging of the centrally
extended Poincaré group giving rise to the new phenomenon of an extra coupling constant
mixing non-trivially the geodesic and the Lorentz forces.

2. A brief review of the general structure of gauge theory for internal and
space-time symmetries

2.1. Internal symmetries

Let us consider a matter Lagrangian density Lmatt
(
ϕα, ϕα

,µ

)
3 depending on the matter fields ϕα

and their first-order derivatives ϕα
,µ ≡ ∂ϕα

∂xµ . Let us assume that the matter action

S =
∫

Lmatt
(
ϕα, ϕα

,µ

)
d4x (1)

is invariant under a global (rigid) Lie group of internal symmetry. The infinitesimal
transformation of the matter fields (associated with each group generator with index (a))
under G is supposed to be

δ(a)ϕ
α = Xα

(a)βϕα, (2)

where Xα
(a)β denotes a matrix realization of the infinitesimal action of the Lie group generators,

satisfying the commutation relations

(X(b)X(a) − X(a)X(b))
α
β = Cc

abX
α
(c)β, (3)

Cc
ab being the structure constants of the group. Hence, the global invariance condition of the

action reads

δ
global
(a) L

(
ϕα, ϕα

,µ

) = Xα
(a)βϕβ ∂L

∂ϕα
+ Xα

(a)βϕβ
,µ

∂L
∂ϕα

,µ

= 0. (4)

3 The index notation throughout this paper is the following: we shall use the first half of the Greek alphabet
α, β, γ, . . . (=1, . . . , N) to denote the internal components (the representation indices) of the matter fields, the
second half of the Greek alphabet µ, ν, λ, . . . (=0, . . . , 3) will denote space-time indices (the space indices running
from 1 to 3 will be denoted with letters from the middle of the Latin alphabet i, j, k, . . .). Finally, we shall use the first
half of the Latin alphabet in brackets (a), (b), (c), . . . (=1, . . . , dimG) to denote the group indices. We emphasize
that the brackets in the group indices by no means are related to symmetrization or antisymmetrization.
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Let us consider the (‘current’, ‘local’ or) gauge group G(M), i.e. a group G with parameters
depending on the space-time points. The corresponding Lie algebra is the tensor product
F(M)⊗G, where F(M) is the multiplicative algebra of real analytic functions (which will be
denoted in what follows by f (a)) on M, and G is the Lie algebra of the Lie group G. Obviously,
the action is not invariant under G(M)

δL
(
ϕα, ϕα

,µ

) = f (a)δ
global
(a) L

(
ϕα, ϕα

,µ

)
+ Xα

(a)βϕβ ∂f (a)(x)

∂xµ

∂L
∂ϕα

,µ

= Xα
(a)βϕβ ∂f (a)(x)

∂xµ

∂L
∂ϕα

,µ

�= 0.

(5)

Note that δ
global
(a) L

(
ϕα, ϕα

,µ

) = 0 by hypothesis. In order to restore the invariance under G(M),
we have to introduce new-compensating fields (usually known as Yang–Mills fields) A(a)

µ with
the usual transformation law of a connection under G(M)

δA(a)
µ = f (b)Ca

bcA
(c)
µ +

∂f (a)

∂xµ
. (6)

The new fields A(a)
µ modify the behaviour of the original Lagrangian of matter so that we

have to find, on the one hand, the expression for the new Lagrangian L̂matt containing the
matter fields and their interaction with the new compensating fields A(a)

µ and, on the other
hand, the free Lagrangian L0 corresponding to the new fields, which should depend on the

new field variables and their first derivatives, i.e. A(a)
µ , A(a)

ν,σ ≡ ∂A(a)
ν

∂xσ . It is well known that
the solution to this question is given by the minimal coupling prescription, which states that
The new Lagrangian describing the matter fields as well as their interaction with the new
compensating fields A(a)

ν has the form

L̂matt
(
ϕα, ϕα

,µ, A(a)
ν

) ≡ Lmatt
(
ϕα, ϕα

,µ − A(a)
µ Xα

(a)βϕβ
)
. (7)

In other words, the matter Lagrangian incorporating the interaction terms is obtained from the
original one by replacing all derivatives of the matter fields with covariant derivatives.

The introduction of the gauge (compensating) fields naturally leads to considering a
new action accounting also for the dynamics of these new fields with Lagrange density
L0

(
A(a)

µ , A(b)
ν,σ

)
S ′ =

∫
(L̂matt + L0) d4x. (8)

Since
∫
L̂matt d4x is invariant under G(M), imposing the invariance ofS ′ requires the invariance

of
∫
L0 d4x itself. That is, the free Lagrangian L0, containing the new compensating fields

and their first derivatives, must be invariant under the current group G(M)

δL0
(
A(c)

µ , A(b)
ν,σ

) =
(

f (b)Ca
bcA

(c)
µ +

∂f (a)

∂xµ

)
∂L0

∂A
(a)
µ

+

(
f (b)Ca

bcA
(c)
µ,ν + Ca

bcA
(c)
µ

∂f (b)

∂xν
+

∂2f (a)

∂xν∂xµ

)
∂L0

∂A
(a)
µ,ν

= 0. (9)

This requirement of gauge invariance of L0 implies that the necessary condition for L0 to
be invariant under the current group G(M) is that L0 depends on the fields A(a)

µ and their
‘derivatives’ A(a)

µ,ν only through the specific combination

F (a)
µν ≡ A(a)

µ,ν − A(a)
ν,µ − 1

2Ca
bc

(
A(b)

µ A(c)
ν − A(b)

ν A(c)
µ

)
, (10)

which is traditionally called the ‘curvature’ of the ‘connection’ A(a)
µ (see again the end of this

subsection).
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It should be remarked that the actual dependence ofL0 on the tensor F is not fixed and must
be chosen with the help of extra criteria, for example the invariance under the rigid Poincaré
group. In particular, to account for the standard Yang–Mills equations the Lagrangian must
be of the form

L0 ∼
dim G∑
a=1

F (a)
µν F (a)

σρ ησµηρν. (11)

Introducing the notation (spin connection)

�α
µβ ≡ A(a)

µ Xα
(a)β, (12)

and taking into account the commutation relations (3), the tensor F (a)
µν can be turned into a

curvature tensor

Rα
µνβ ≡ F (a)

µν Xα
(a)β = ∂µ�α

νβ − ∂ν�
α
µβ − 1

2Ca
bc

(
A(b)

µ A(c)
ν (X(a))

α
β − A(b)

ν A(c)
µ (X(a))

α
β

)
= ∂µ�α

νβ − ∂ν�
α
µβ − (

�α
µγ �

γ

νβ − �α
νβ�

γ

µβ

)
. (13)

The content of this subsection summarizes briefly the general scheme of the well-known
formulation of gauge theory associated with internal symmetry groups. Subtle questions such
as the Higgs–Kibble mechanism via spontaneous symmetry breaking are not considered in
the present paper. However, in a forthcoming work [40] we shall propose an alternative
mass-generating mechanism for the gauge vector bosons which is based essentially on the
introduction of the group parameters in the theory as dynamical fields.

2.2. Space-time symmetries

In this subsection, we generalize the previous one to the case in which the rigid group also
acts on the space-time. The infinitesimal transformation of the space-time coordinates and the
matter fields is taken to be of the form

δ(a)x
µ = X

µ

(a) (14)

δ(a)ϕ
α = Xα

(a)βϕβ, (15)

where X
µ

(a) is in general a function of the position. As in the internal symmetry case, the
starting point of the theory is the hypothesis of global invariance of the matter action, i.e.

X
µ

(a)

∂Lmatt

∂xµ
+ Xα

(a)βϕβ ∂Lmatt

∂ϕα
+

(
Xα

(a)βϕβ
,µ − ϕα

,ν

∂Xν
(a)

∂xµ

)
∂Lmatt

∂ϕα
,µ

+ Lmatt∂µX
µ

(a) = 0. (16)

The appearance of the divergence of the action of the group on the space-time coordinates
∂µX

µ

(a), a term which was absent for the internal symmetry case, is remarkable. This is a
consequence of the variation of the integration volume: δ(a) d4x = ∂µX

µ

(a) d4x.
Let us construct an invariant action under the local (gauge) space-time group generated

by

f (a)(x)δ(a)x
µ = f (a)(x)X

µ

(a) (17)

f (a)(x)δ(a)ϕ
α = f (a)(x)Xα

(a)βϕβ. (18)

It is worth realizing that the dependence of the space-time components of the generators on
xµ through X

µ

(a) is not ‘gauge’. The gauge dependence on xµ arises from the fact that these
generators are multiplied by arbitrary functions f (a)(x).
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The construction of a gauge invariant Lagrangian density requires the introduction of new
fields. Apart from compensating fields A(a)

ν analogous to those of internal symmetries, there
will be additional compensating fields kν

µ (tetrad fields) related to the group action on the
space-time. The corresponding transformation laws of the compensating fields under G(M)

read

δA(a)
µ = f (b)Ca

bcA(c)
µ + kν

µ

∂f (a)

∂xν
− f (b)A(a)

σ

∂Xσ
(b)

∂xµ
(19)

δkν
µ = Xν

(a)k
σ
µ

∂f (a)

∂xσ
+ f (a)

(
kσ
µ

∂Xν
(a)

∂xσ
− kν

σ

∂Xσ
(a)

∂xµ

)
. (20)

Inverse fields of kν
µ will be denoted by qµ

σ , so that

kν
µqµ

σ = δν
σ (21)

kν
µqσ

ν = δσ
µ. (22)

Following similar steps to those in the internal case, we can establish a generalized minimal
coupling prescription by saying that the new Lagrangian describing the matter fields as well
as their interaction with the compensating fields A(a)

ν , kν
µ has the form

L̂matt(ϕ
α, ϕα

,µ,A(a)
ν , kν

µ) ≡ Lmatt
(
ϕα, kν

µϕα
,ν − A(a)

µ Xα
(a)βϕβ

)
, (23)

although the expression kν
µϕα

,ν − A(a)
µ Xα

(a)βϕβ can no longer be considered as a covariant
derivative. Let us prove the gauge invariance of the action associated with this Lagrangian,
i.e. let us see that

δŜmatt = 0, (24)

where

Ŝmatt =
∫

L̂matt d4x ≡
∫

L̂matt
(
ϕα, ϕα

,µ,A(a)
ν , kν

µ

)
d4x

=
∫

Lmatt
(
ϕα, kν

µϕα
,ν − A(a)

µ Xα
(a)βϕβ

)
d4x, (25)

the factor  being a function of the tetrad fields to be determined by demanding the gauge
invariance of Ŝmatt. The infinitesimal variation of L̂matt

(
ϕα, ϕα

,µ,A(a)
ν , kν

µ

)
under G(M) reads

δL̂matt = f (a)X
µ

(a)

∂L̂matt

∂xµ
+ f (a)Xα

(a)βϕβ ∂L̂matt

∂ϕα

+
(
∂µf (a)Xα

(a)βϕβ − ϕα
,ν

(
∂µf (a)Xν

(a) + f (a)∂µXν
(a)

)
+ f (a)Xα

(a)βϕβ
,µ

)∂L̂matt

∂ϕα
,µ

+
(
f (b)Ca

bcA(c)
µ + kν

µ∂νf
(a) − f (b)A(a)

σ ∂µXσ
(b)

)∂L̂matt

∂A(a)
µ

+
(
Xν

(a)k
σ
µ∂σf (a) + f (a)

(
kσ
µ∂σXν

(a) − kν
σ ∂µXσ

(a)

))∂L̂matt

∂kν
µ

. (26)

Let us consider the following change of variables:

φα = ϕα

φα
,µ = kν

µϕα
,ν − A(a)

µ Xα
(a)βϕβ

B(a)
µ = A(a)

µ (27)

Kµ
ν = kµ

ν

Qµ
ν = qµ

ν ,
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and the corresponding change in the partial derivatives

∂

∂ϕα
= ∂

∂φα
− B(a)

µ X
β

(a)α

∂

∂φ
β
,µ

∂

∂ϕα
,µ

= Kµ
ν

∂

∂φα
,ν

(28)
∂

∂A(a)
µ

= ∂

∂B(a)
µ

− Xα
(a)βφβ ∂

∂φα
,µ

∂

∂kν
µ

= ∂

∂Kν
µ

+ Qσ
ν

(
φα

,σ + B(a)
σ Xα

(a)βφβ
) ∂

∂φα
,µ

.

With the help of this change of variables the infinitesimal variation (26) under the local space-
time symmetry group can be written as f (a) times the global variation of the original matter
Lagrangian density of the theory depending on the field variables φα and φα

,µ, i.e.

δL̂matt
(
ϕα, ϕα

,µ,A(a)
ν , kν

µ

) = f (a)δ
global
(a) Lmatt

(
φα, φα

,µ

)
, (29)

where

δ
global
(a) Lmatt

(
φα, φα

,µ

) ≡ Xν
(a)

∂Lmatt

∂xν
+ X

γ

(a)βφβ ∂Lmatt

∂φγ
+

(
X

γ

(a)βφβ
,ν − φγ

,σ

∂Xσ
(a)

∂xν

)
∂Lmatt

∂φα
,ν

. (30)

Using the hypothesis of invariance of the matter action under the global group (see (16)), it
follows that

δL̂matt
(
ϕα, ϕα

,µ,A(a)
ν , kν

µ

) = −f (a)Lmatt
(
φα, φα

,µ

)
∂µX

µ

(a)

= −f (a)Lmatt
(
ϕα, kν

µϕα
,ν − A(a)

µ Xα
(a)βϕβ

)
∂µX

µ

(a). (31)

Let us determine the simplest form of the factor  that leads to a gauge invariant Lagrangian
density L̂matt ≡ L̂matt. L̂matt must satisfy the condition

δL̂matt + L̂matt∂µ

(
f (a)X

µ

(a)

) = 0. (32)

More explicitly,

δL̂matt + δL̂matt + L̂matt∂µf (a)X
µ

(a) + L̂mattf
(a)∂µX

µ

(a) = 0. (33)

Assuming that

L̂matt
(
ϕα, ϕα

,µ,A(a)
ν , kν

µ

) = Lmatt
(
ϕα, kν

µϕα
,ν − A(a)

µ Xα
(a)βϕβ

)
(34)

and using (31), the gauge invariance condition of L̂matt (32) provides the equation that  must
satisfy, that is

δ + ∂µf (a)X
µ

(a) = 0. (35)

For simplicity, we shall assume that  only depends on the tetrad fields, so that

δ = ∂

∂kν
µ

δkν
µ, (36)

and taking into account (20), the final equation that determines the form of  reads(
Xν

(a)k
σ
µ∂σf (a) + f (a)

(
kσ
µ∂σXν

(a) − kν
σ ∂µXσ

(a)

)) ∂

∂kν
µ

+ ∂µf (a)X
µ

(a) = 0. (37)

Since the functions f (a) are arbitrary and independent, the coefficients of f (a) and their first-
order derivatives must be zero, so that we obtain the following system of partial differential
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equations:

(a) f (a) :
(
kσ
µ∂σXν

(a) − kν
σ ∂µXσ

(a)

) ∂

∂kν
µ

= 0 (38)

(b) ∂σ f (a) : Xν
(a)k

σ
µ

∂

∂kν
µ

+ Xσ
(a) = 0, (39)

and the general solution for this system is

 = det
(
qν

µ

)
. (40)

Note that when kν
µ → δν

µ (the internal symmetry case) then  → 1. As a corollary, we can
assert that the new action invariant under the local space-time symmetry describing the matter
fields as well as their interaction with the compensating (gauge) fields A(a)

ν , kν
µ reads

Ŝmatt =
∫

L̂matt d4x ≡
∫

 L̂matt d4x, (41)

where  ≡ det(qν
µ).

If we introduce new ‘tetrad-like’ compensating fields h(a)ν
µσ associated with each generator

by means of the decomposition of the tetrad field

kν
µ = δν

µ − h(a)ν
µσ Xσ

(a) (42)

we can write the interaction term in the way

ϕα
,µ − A(a)

µ Xα
(a)βϕβ − h(a)ν

µσ Xσ
(a)ϕ

α
,ν (43)

that generalizes more directly the case of internal symmetry (a similar expression was already
suggested in a footnote in [6]). From this expression we can observe that while the gauge
potentials associated with the internal action of the group couple to the matter fields, the
fields h(a)ν

µσ couple to the derivatives of the matter fields. Also note that the two indices of kν
µ

transform according to different transformation rules, i.e. while the index ν transforms as a
tensor, the index µ inherits the non-tensorial character of h(a)ν

µσ . We shall not make an explicit
distinction in the notation for the tetrad indices. No confusion should arise since tetrads (k)
and their inverse (q) are denoted differently.

As far as the LagrangianL0 for the free-compensating fields is concerned, we can establish
the following theorem: The necessary condition for L0 to be invariant under the current group
G(M) is that L0 depends on the fields A(a)

µ , kν
µ and their ‘derivatives’ A(a)

µ,ν, k
ν
µ,σ only through

the specific combination (generalized ‘curvature’)

F (a)
µν ≡ A(a)

µ,σ kσ
ν − A(a)

ν,σ kσ
µ − 1

2Ca
bc

(
A(b)

µ A(c)
ν − A(b)

ν A(c)
µ

) − A(a)
σ T σ

µν,

with T σ
µν ≡ qσ

ρ (kρ
µ,τ k

τ
ν − kρ

ν,τ k
τ
µ).

The gauge-invariant action for the compensating fields has the form

Ŝ0 =
∫

L̂0 d4x ≡
∫

 L̂0 d4x. (44)

Now that a generalized gauge theory including space-time symmetries is available, different
gauge gravitational theories can be constructed using several space-time symmetry groups:
space-time translations, the Lorentz group, the Poincaré group, the Weyl group, etc and the
resulting theories can be reduced to Einstein’s theory in some particular cases. As an example,
and since we shall be concerned with the Poincaré group in the following section, the rest of
this subsection will be devoted to the gravitational theory associated with the gauge theory of
the Poincaré group (see [6] among others).
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The notation for the Poincaré group (semi-direct product of the translations group and the
Lorentz group) index is (a) = {(µ) translations, (νσ ) Lorentz} and a particular realization for
the generators of the rigid Poincaré algebra reads

Translations:

δ(µ)x
ν = δν

µ (45)

δ(µ)ϕ
α = 0 (46)

Lorentz:

δ(µν)x
σ = δσ

(µν),ρxρ ≡ (
δσ
µηνρ − δσ

ν ηµρ

)
xρ (47)

δ(µν)ϕ
α = Sα

(µν)βϕβ (48)

and the form of Sα
(µν)β is determined by the commutation relations of the Poincaré group and

antisymmetry in the Lorentz indices Sα
(µν)β = −Sα

(νµ)β .
In the present case, the Lagrangian for the free-compensating fields A(ν)

µ ,A(νσ )
µ , kν

µ is an
arbitrary function of the translational and Lorentz-generalized curvatures, according to the
previous general theory of gauged space-time algebras,

L0 = L0
(
F (µ)

νσ ,F (νσ )
ρθ

)
. (49)

As a particular case, we can choose

L0 = L0
(
F (νσ )

ρθ

)
(50)

and by means of the decomposition of the tetrad fields in terms of the translational gauge fields

kµ
ν = δµ

ν + A(µ)
ν (51)

one can obtain (by combining the equations of motion associated with A(µ)
ν and kν

µ) the
following generalized Einstein’s equation

F (σρ)
µν

∂L0

∂F (σρ)
εν

− 1

2
δε
µL0 = −1

2
kε
ξ t

ξ
µ, (52)

where

L0 ≡ L0
(
F (νσ )

ρθ

)
, (53)

tµν ≡ qµ
σ

(
−δσ

ν L̂matt +
∂L̂matt

∂ϕα
,σ

φα
ρ qρ

ν

)
, (54)

φα
ρ ≡ kν

ρϕ
α
,ν − A(a)

ρ Xα
(a)βϕβ, (55)

L̂matt = Lmatt
(
ϕα, φα

µ

)
. (56)

Let us consider two cases:
(A) Equations in vacuum. The action reduces to that for the free-compensating fields,

S0 =
∫

(L0) d4x, (57)

and, with the choice L0 = F (µν)
σρ ησ

µηρ
ν , the equation of motion δLtot

δA(a)
µ

= 0 yields

A(σρ)µ = 1
2Tµσρ + 1

2 (Tσρµ − Tρσµ), (58)

where A(σρ)µ ≡ A(θε)
µ ηθσ ηερ and Tµσρ ≡ T ν

σρηνµ. Note that A(σρ)
µ = −A(ρσ )

µ and T ν
σρ = −T ν

ρσ .
Substituting (58) into L0, one easily finds that the theory reduces to Einstein’s vacuum theory.
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(B) Equations with matter. In this case the total action must include a matter piece which
should be made explicit. Then, only general comments can be pointed out. For instance, the
expression (58) now reads

A(σρ)µ = 1
2Tµσρ + 1

2 (Tσρµ − Tρσµ) + M(σρ)µ, (59)

where the extra term M(σρ)µ is zero for spinless matter but not for fermionic matter. Then, for
a Dirac spinor ψ , M(σρ)µ is proportional to ψ̄γµ�σρψ and this term is known as the contortion
created by spinors [11]. See also [6].

This situation generalizes Einstein’s theory with a Lagrangian density,

F (µν)
µν = R(�Levi-Civita) + ϒ(M(σρ)µ), (60)

where the form of the function ϒ again depends on the specific nature of fermionic matter.
Had L0 depended also on F (µ)

νσ we would have obtained a theory even more general than
Einstein’s, known as the Einstein–Cartan theory, in which F (µν)

σρ is interpreted as a curvature
and F (µ)

νσ as a torsion.
We would like to remark that the formulation of the gauge theory associated with space-

time symmetry groups, which has been presented in this subsection, not only can be applied
to groups higher than the Poincaré group (in this sense this theory would be more general than
that of [6]) as for instance the Weyl group, but also, this framework results specially suitable
for the unification of interactions. The crucial point is the incorporation of non-trivial gauge
translational potentials even though the corresponding generators do not act on the internal
components of the matter fields.

3. Towards a mixing of gravity and electromagnetism

The present section is devoted to a simple, yet non-trivial framework to account for the mixing
of gravitation and the rest of fundamental interactions. In our approach we make use of two
important physical notions: the well-known gauge invariance principle and the concept of
central extension of a group (in particular, the central extension of Poincaré group, P , by
U(1), denoted in the following as P̃). On the one hand, the gauge invariance is the key for
understanding of the formulation of the interactions and is a requirement that helps to achieve
renormalizability. Moreover, the interest in the description of gravity as a gauge theory is
precisely the possibility of its unification with the rest of interactions. On the other hand,
the motivation for considering a centrally extended group is based on the relevance of this
notion in some areas of physics, specially in quantum theory (also in classical mechanics
in the Hamilton–Jacobi approach). In fact, traditional space-time groups such as Galilei or
Poincaré groups leave only semi-invariant the Lagrangians of the corresponding free particles,
and a central extension is required to achieve strict invariance. It is also well known that the
Schrödinger equation for the free particle is not invariant under the Galilei group G although it
is under the centrally extended Galilei group G̃(m).4 Analogously, we can consider the space-
time symmetry of the quantum relativistic particle, which is characterized by the commutator
of boosts and translations modified with the central generator � associated with U(1), i.e.

[Ki, Pj ] = δi
j

(
1

c
P0 + λ0�

)
. (61)

4 The particular case of central extensions of Lie groups by U(1) (whose classification was carried out long ago
by Bargmann [41]) is very important from the physical point of view. In fact, it is known that the question of the
classification of all the possible projective unitary representations of a group (which are the relevant representations
in quantum mechanics) is equivalent to the problem of the classification of the central extensions of a group by U(1).
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with λ0 ≡ m. In this case, a particular 4-vector λ of the orbit λ2 = m2 in the momentum space
has been chosen. In the non-relativistic limit, this commutator yields the basic commutators
of the centrally extended Galilei group, G̃(m).

In the present paper we shall approach the mixing between electromagnetism and gravity
by studying the gauge symmetry of the central extension of the Poincaré group by U(1),
denoted by P̃ . The group index (a) now runs over {(µ) translation, (νσ ) Lorentz, (�) U(1)}.
The commutator of Lorentz and translations generators is modified according to

[M̃µν, P̃ρ] = ηνρP̃µ − ηµρP̃ν − (λµηνρ − λνηµρ)� ≡ Cσ
µν,ρP̃σ + C�

µν,ρ�, (62)

with

C�
µν,ρ ≡ λνηµρ − λµηνρ, (63)

where � is the generator of U(1) and λµ is a vector in the Poincaré co-algebra belonging to a
given co-adjoint orbit, and will be related later to the coupling constant of the mixing.

From the strict mathematical point of view, the group P̃ is a trivial central extension of
the Poincaré group by U(1). In fact, by making the replacement

Pµ → P̃µ = Pµ + λµ�, (64)

it becomes clear that P̃ is equivalent to P ⊗ U(1). Therefore, the associated co-cycle is
trivial, i.e. co-boundary. It is known, however, that trivial co-cycles can be divided into two
different types depending on the structure of their generating functions [42]. The first type
comprises the co-boundaries which are really physically trivial as they lead to zero curvature.
The second type (and the truly relevant from the physical point of view) corresponds to those
co-boundaries leading to a group connection with a non-trivial curvature and are called pseudo-
co-cycles. The central extensions that they provide are referred to as pseudo-extensions. The
most remarkable fact is that non-trivial symplectic structures and dynamics can be derived out
of them [43, 44]. An example of pseudo-extension is the case of the central extension of the
Poincaré group by U(1). As we shall see in the present section, this group is associated with a
gauge symmetry which in particular generates a U(1)-field strength (containing terms of pure
gravitational origin) that is not trivial as a consequence of the associated co-boundary being a
pseudo-co-cycle5.

Let us consider the gauge theory of P̃ . Proceeding according to the general theory
developed in subsection 2.2, the Lagrangian for the free-compensating fields should be a
general function of the generalized curvatures

L0 = L0
(
F (σ )

µν ,F (σρ)
µν ,F (�)

µν

)
. (65)

Let us define the fields A(a)
µ ≡ qν

µA(a)
ν and write the curvatures in the following way:

F (a)
µν ≡ kσ

µkρ
ν F (a)

σρ , (66)

where

F (a)
σρ ≡ A(a)

σ,ρ − A(a)
ρ,σ + 1

2 C̃a
bc

(
A(b)

σ A(c)
ρ − A(b)

ρ A(c)
σ

)
. (67)

5 The characterization of the classes of pseudo-extensions associated with non-equivalent symplectic structures leads
to the notion of pseudo-cohomology. As a report on pseudo-extensions, and the role that they play in representation
theory, we refer the reader to [45] and references there in. Here we would like to mention briefly some indications of
the need of pseudo-cohomology. It is known that pseudo-co-cycles play a fundamental role in representation theory
of semi-simple groups (including infinite-dimensional ones like Diff(S1) and other diffeomorphism groups) and also
in the explicit construction of the local exponent associated with the Lie algebra co-cycles of the corresponding
Kac–Moody groups [44, 46]. In any case, the framework where the need and relevance of pseudo-cohomology is
more patent is the so-called group approach to quantization (GAQ) (mentioned in the introduction).



A new attempt towards the unification of space-time and internal gauge symmetries 1739

Here, (a) runs over the entire group P̃ and C̃a
bc denotes its structure constants. The

presence of a coupling constant of the mixing, κ , through C�
µ,σρ in the generalized curvature

F (�)
µν , due to the central pseudo-extension, is to be remarked. In fact, and without loss of

generality we can select a preferred direction for λµ,

λµ = −κδ0
µ, (68)

so that we arrive at

C�
µ,σρ ≡ −κ

(
ηρµδ0

σ − ησµδ0
ρ

)
. (69)

In the context of the gauge theory of the Poincaré group, the Lorentz curvature is enough
to recover the Einstein gravity in vacuum, as was pointed out in subsection 2.2. Therefore, in
the present model it is enough to consider only the Lorentz and U(1) generalized curvatures
in order to construct an electro-gravity theory in the most economical way. The expression of
such curvatures reads, respectively,

F (ερ)
µν = A(ερ)

µ,ν − A(ερ)
ν,µ − ηθσ

(
A(εθ)

µ A(σρ)
ν − A(εθ)

ν A(σρ)
µ

)
,

F (�)
µν = A(�)

µ,ν − A(�)
ν,µ − 1

2C�
ε,θρ

(
A(ε)

µ A(θρ)
ν − A(ε)

ν A(θρ)
µ

)
= A(�)

µ,ν − A(�)
ν,µ + κηij

(
A(j)

µ A(0i)
ν − A(j)

ν A(0i)
µ

)
, (70)

where ηij is the Minkowski metric tensor and the Latin indices i, j run from 1 to 3 and we
recall that A

(ε)
θ ≡ qν

θ A(ε)
ν = qν

θ

(
kε
ν − δε

ν

) = δε
θ − qε

θ .
The standard Einstein–Maxwell theory can be described by the gauge theory associated

with the direct product of the Poincaré and U(1) groups. But in our present approach
corresponding to the central extension the U(1) gauge potential is no longer the usual
electromagnetic field A(elec)

µ in the presence of a gravitational field; rather A(�)
µ must contain

it at zero order in the coupling constant κ to account for the limit of the theory without
mixing, i.e.

A(�)
µ = A(elec)

µ + κB(grav)
µ . (71)

In this expression B
(grav)
µ is an ‘electromagnetic’ contribution of pure gravitational origin (note

that B
(grav)
µ must be a function of the gravitational potentials). The theory can be developed

working up to first order in κ and this is, in fact, a good approximation to the problem due
to the small value of the coupling constant κ (it should be expected that |κq| � melectron and
therefore κ would result to be � 6 × 10−12KgC−1 [38]).6

Hence, the curvature associated with U(1) can be decomposed into two pieces: the
usual electromagnetic curvature in a gravitational background F (elec)

µν added to a contribution

constructed from the gravitational potentials F
(grav)
µν , i.e.

F (�)
µν = F (elec)

µν + κF (grav)
µν (72)

with

F (elec)
µν = A(elec)

µ,ν − A(elec)
ν,µ ,

(73)
F (grav)

µν = B(grav)
µ,ν − B(grav)

ν,µ + ηij

(
A(j)

µ A(0i)
ν − A(j)

ν A(0i)
µ

)
.

6 The maximum supposed value for κ would correspond to the mass–charge relation of the electron. In this case,
the physical content of the module of λµ would be essentially the quotient of coupling constants (gravitational and
electromagnetic ones). This is in fact a feature of unified (gauge) theories, for example, in the electro-weak theory the
tangent of the Weinberg angle gives precisely the relation between the isospin and hypercharge coupling constants.
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As a result we propose that the field B
(grav)
µ could be responsible for some electromagnetic force

associated with very massive rotating systems, as A(0i)
µ is somehow related to ‘Coriolis-like

forces’7.
The simplest electro-gravitational gauge invariant Lagrangian density for the free

compensating fields in our model has the form

L0 ∼ 
(
F (�)

µν F (�)µν + F (µν)
µν

)
= 

(
gµσgνρF (�)

µν F (�)
σρ + kσ

µkρ
ν F (µν)

σρ

)
, (74)

where F (�)µν ≡ F (�)
µν ησµηρν , gσρ = kσ

µkρ
ν ηµν and  = det

(
qν

µ

)
.

The Euler–Lagrange motion equations read

(1)
∂L0

∂A
(νρ)
µ

− ∂

∂xσ

(
∂L0

∂A
(νρ)
µ,σ

)
= 0 ⇒ C�

σ,εθA
(σ)
ν F (�)µν + kµ

ρ T
ρ
εθ − k

µ
θ T ρ

ερ

+ kµ
ε T

ρ
θρ +

(
kµ
ρ kν

θ − k
µ
θ kν

ρ

)
A(ρ

ε)ν − (
kµ
ε kν

ρ + kµ
ρ kν

ε

)
A(ρ

θ)ν = 0, (75)

where F (�)µν = F
(�)
ρλ gρµgλν, gρµ = kρ

σ k
µ
θ ησθ , A(µ

ν)σ ≡ ηνρA
(µρ)
σ and T

ρ
εθ = qρ

µ

(
kµ
ε,τ k

τ
θ −

k
µ
θ,τ k

τ
ε

);
(2)

∂L0

∂A
(�)
µ

− ∂

∂xσ

(
∂L0

∂A
(�)
µ,σ

)
= 0 ⇒ ∂

∂xσ
(F (�)µσ ) = 0; (76)

(3)
∂L0

∂k
µ
ν

− ∂

∂xσ

(
∂L0

∂k
µ
ν,σ

)
= 0 ⇒ F (νσ)

µσ − 1

2
δν
µF

(σλ)
σλ = T ν

µ , (77)

where

T ν
µ ≡ T ν(mix)

µ + T ν(�)
µ .

The tensor T ν(�)
µ ≡ −F (�)ν

σ F (�)σ
µ + 1

2δν
µF

(�)
σλ F (�)σλ, generalizes the energy–momentum tensor

corresponding to the electromagnetic field in a gravitational field (with F (�)ν
σ = gλνF

(�)
σλ ) and

the piece T ν(mix)
µ = 1

2C�
µ,θεq

ν
ρF (�)ρτA(θε)

τ is completely new and arises as a direct consequence
of the mixing of the space-time and internal symmetries.

In order to proceed further in the understanding of the proposed model, we shall consider
the effects of the mixing of gravity and electromagnetism in the ‘geodesic’ motion. Let
us consider a spinless particle of mass m, momentum pµ

(= muµ = m
dxµ

dτ

)
and charge e.

According to the (generalized) minimal coupling principle, the Lagrangian of the free particle

Lparticle = 1

2m
pµpνη

µν (78)

must be replaced by the modified Lagrangian, where pµ → kν
µ

(
pν − eA(�)

ν

) = kν
µ

(
pν −

eA(elec)
ν − κeB

(grav)
ν

)
:

L̂particle = 1
2muµuνgµν − euµA(elec)νgµν − κeuµB(grav)νgµν, (79)

where we have already neglected the misleading term e2

2m
A(�)µA(�)νgµν ,8 which, by the

way, does not appear when working directly with the Poincaré–Cartan form instead of the

7 Note that the Lorentz potentials A
(0i)
µ can be related to the components �i

00, �
i
0k, �

i
jk of the Christoffel symbols

which produce a Coriolis-like force on a particle in a constant gravitational field [47].
8 We recall that already in the standard formulation of the Lorentz force in a gravitational field (without mixing)
the interaction Lagrangian Lint , among some other requisites, must be linear in the charge of the particle and in the

electromagnetic potential to account for the Lorentz invariance of γLint (with γ ≡ (1 − ( u
c
)2)−

1
2 ) as a consequence

of the requirement of the Lorentz invariance of the action integral written in terms of the proper time τ [48].
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Lagrangian. We also consider (74) as the Lagrangian density for the free-compensating fields.
As regards the interaction between a particle and a field, in general, it is required to distinguish
between the coordinates yσ , where the fields are evaluated and the coordinates xσ for the
particle. In L̂particle, the fields are evaluated at the position of the particle, where the interaction
occurs, but in L0 the fields are evaluated at yσ .

The equation for the particle, ∂L̂particle

∂xσ − d
dτ

( ∂L̂particle

∂uσ

) = 0 results in the usual motion equation
for a particle in the presence of both gravitational and electromagnetic fields, with an additional
Lorentz-like force (proportional to κe) generated by the gravitational potentials, i.e.

gµσ

duµ

dτ
= −uµuν�(L−C)

µν,σ − e

m
uµF (elec)

µσ − κe

m
uµ

(
∂σB(grav)

µ − ∂µB(grav)
σ

)
. (80)

with �(L−C)
µν,σ = 1

2 (∂µgνσ + ∂νgµσ − ∂σgµν) being the Levi-Civita connection associated with
the metric gµν = qρ

µqν
σ ηρν .

Considering the non-relativistic limit (c → ∞) on the Poincaré group (stated as an
Inonu–Wigner Lie algebra contraction [49]), the explicit form of the field B

(grav)
µ is then very

simple (hi ≡ g0i − η0i )

B0 = −
	h2

8
Bi = −hi

2
. (81)

It must be remarked, however, that in any case we do not refer to a new force but, just, a
mixing of interactions, so that the number of field degrees of freedom is the same as that in
the κ → 0 limit.

Some final comments are in the order: firstly, since the present theory has been formulated
on symmetry grounds, it could be possible to attempt the quantization on the basis of
the group approach to quantization. With regard to this question the purpose of the GAQ
treatment for the quantization of gravity would consist in restricting ourselves to a subgroup
of the supposed symmetry group of gravity. Thus using this subgroup to parametrize the
corresponding solution submanifold (Schwarzschild-like solution, for instance), one could
manage to describe the theory with a lower number of parameters (even finite) in a non-
perturbative framework, then avoiding renormalizability problems. Secondly, the unification
of gravity and electromagnetism proposed here can be immediately generalized to the rest of
interactions once the group U(1) is considered as a subgroup of (SU(2) ⊗ U(1))/Z2, SU(5)

or any other ‘grand unification group’. Finally, we also remark that the semi-direct product of
the diffeomorphism group of the space-time and the gauge group, Diff(M)⊗S G(M), provides
an extra natural mixing between gravity and the rest of (internal) interactions, although maybe
less drastic in phenomenological terms than the mixing proposed here. In fact, in the case of
electromagnetism, the semi-direct action of the group of diffeomorphisms on the gauge group
U(1)(M) would account for diagrams in which photons and gravitons produce gravitons.
Thus, this mixing would result in a new modified dispersion relation between gravitons and
photons. However in the context of gauging the central extension of the Poincaré group by
U(1), diagrams in which two gravitons provide one photon would enter the theory. In such
a case the production of photons in the absence of electrically charged sources would be
expected.
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